Counting Query Answers over a DL-Lite Knowledge Base

KRDB Summer Seminars

Bozen-Bolzano, Italy

- Joint work with: Diego Calvanese ${ }^{1,2}$, Julien Corman ${ }^{1}$ and Simon Razniewski ${ }^{3}$
- Speaker: Davide Lanti ${ }^{1}$ lanti@inf.unibz.it
- Affiliations:
$\triangleright{ }^{1}$ Free University of Bozen-Bolzano, Italy
${ }^{2}$ Umeå University, Sweden
- ${ }^{3}$ Max-Planck-Institut für Informatik, Germany

Outline

- The Setting
- Tractability and Intractability
- Rewritability and Non-rewritability
- Conclusions and Future Directions

Outline

\author{

- The Setting
}
- Tractability and Intractability
- Rewritability and Non-rewritability
- Conclusions and Future Directions

The Problem of Accessing Relevant Data

- Every day, a huge amount of data is produced by various actors
- Such data is valuable, but it must be accessed and processed to create value
- Complex organization of how the data is stored ${ }^{1}$, proper of big companies or institutions, is recognized as one of the huge challenges to data access

[^0]
Ontology-based Data Access (OBDA) [Poggi et al., 2008]

OBDA Approach to Data Access

Hide the complexity of data storage behind a convenient representation taking into account both the domain knowledge and the content of the relational database.

Ontology-mediated Query Answering (OMQA) [Bienvenu and Ortiz, 2015]

OMQA, or Query Answering over a Knowledge Base (KB)
We assume the conceptual representation to be materialized, and we ignore mappings and DB.

Syntax

- A Knowledge Base (KB) is a pair $(\mathcal{T}, \mathcal{A})$ where \mathcal{T} is a finite set of axioms called TBox and \mathcal{A} is a finite set of assertions called ABox.
- Axioms in \mathcal{T} are positive inclusions $B \sqsubseteq C$, negative inclusions $B \sqsubseteq \neg C$, and role inclusions $R \sqsubseteq R^{\prime}$, where concepts B, C and roles R, R^{\prime} adhere to the following grammar:

$$
R \longrightarrow P\left|P^{-} \quad B \longrightarrow A\right| \geqslant{ }_{1} R \quad C \longrightarrow A \mid \geqslant{ }_{n} R
$$

where A is a concept name, P is a property name, and $n \in \mathbb{N}^{+}$.

- Assertions in \mathcal{A} are ground atoms of the form $A(a), P(a, b)$, where a, b are constants.
- We distinguish the following fragments of the logic above:
$\triangleright D L-$ Lite $_{\text {pos }}$ only allows for positive inclusions, with the requirement that $n=1$.
\triangle DL-Lite core extends $D L-$ Lite $_{\text {pos }}$ with negative inclusions
- The superscript ${ }^{\mathcal{H}}$ extends the logic with role inclusions
\triangleright The superscript \mathcal{N}^{-}extends the logic with arbitrary number restrictions $\geqslant n$, but only on the RHS of axioms.

Semantics

- As usual, an interpretation \mathcal{I} is a pair $\left(\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}}\right)$. Here we assume the standard name assumption:
$\triangleright c^{\mathcal{I}}=c$, for every constant c
- From now on, whenever convenient we treat interpretations as sets of atoms (over constants and anonymous objects)
- \mathcal{I} is a model for a $\mathrm{KB} \mathcal{K}$, denoted as $\mathcal{I} \models \mathcal{K}$, if
- $\mathcal{A} \subseteq \mathcal{I}$
$\triangleright E_{1}^{\mathcal{I}} \subseteq E_{2}^{\mathcal{I}}$, for each $E_{1} \sqsubseteq E_{2} \in \mathcal{T}$

Query Answering under Count Semantics (Definition)

- We use the notation

$$
q(\vec{x}) \leftarrow p_{1}\left(\vec{t}_{1}\right), \ldots, p_{n}\left(\vec{t}_{n}\right)
$$

for conjunctive queries (in particular, the body of a query is a set of atoms)

- A match ρ for q in an interpretation \mathcal{I} is a mapping over variables such that $\rho(\operatorname{body}(q)) \subseteq \mathcal{I}$
- An answer to $q(\vec{x})$ over \mathcal{I} is a pair (ω, k) such that
- $k \geqslant 1$
\triangleright there are exactly k matches $\rho_{1}, \ldots, \rho_{k}$ for q in \mathcal{I} that verify $\omega=\left.\rho_{i}\right|_{\bar{x}}$, for $i \in\{1, \ldots, k\}$
Δ We denote by ans (q, \mathcal{I}) the set of answers to q over \mathcal{I}
$\triangleright(\omega, k)$ is a certain answer to q over a KB \mathcal{K}, denoted as $(\omega, k) \in \operatorname{cert}(q, \mathcal{K})$, if k is the smallest number such that $(\omega, k) \in \operatorname{ans}(q, \mathcal{I})$ for some model \mathcal{I} of \mathcal{K}.

Query Answering over a KB under Count Semantics (Example)

Knowledge Base
 $\mathcal{A}=\left\{\begin{array}{l}\text { hasChild(Kendall, Alice), } \\ \text { hasChild(Jordan, Alice), } \\ \text { hasChild(Parker, Bob), } \\ \text { hasChild(Parker, Carol), } \\ \text { FatherOfTwo(Kendall), } \\ \text { FatherOfThree(Parker) }\end{array}\right\}$

$$
\mathcal{T}=\left\{\begin{array}{l}
\text { FatherOfTwo } \subseteq \geqslant_{2} \text { hasChild, } \\
\text { FatherOfThree } \sqsubseteq \geqslant_{3} \text { hasChild } \\
\exists \text { hasChild } \\
-\sqsubseteq \text { Child }
\end{array}\right\}
$$

Query

$$
q() \leftarrow \operatorname{Child}(y)
$$

Model

Answer: 3

Query Answering over a KB under Count Semantics (Example)

Knowledge Base

$\mathcal{A}=\left\{\begin{array}{l}\text { hasChild(Kendall, Alice), } \\ \text { hasChild(Jordan, Alice), } \\ \text { hasChild(Parker, Bob), } \\ \text { hasChild(Parker, Carol), } \\ \text { FatherOfTwo(Kendall), } \\ \text { FatherOfThree(Parker) }\end{array}\right\}$

$$
\mathcal{T}=\left\{\begin{array}{l}
\text { FatherOfTwo } \sqsubseteq \geqslant_{2} \text { hasChild, } \\
\text { FatherOfThree } \sqsubseteq \geqslant_{3} \text { hasChild } \\
\exists \text { hasChild } \sqsubseteq \text { Child } \\
\text { Child } \sqsubseteq \leqslant 2 \text { hasChild }
\end{array}\right\}
$$

Query

$$
q() \leftarrow \operatorname{Child}(y)
$$

Model

Answer: 4

Motivation

- We focus here on the DL-Lite family because it is the language of choice of OBDA/OMQA, specifically designed for rewritability of CQs/UCQs
\triangleright Rewritability is a key notion in OBDA/OMQA, and it guarantees that the certain answers over a knowledge base can be retrieved by just a (rewritten) query over the DB/ABox.
- Counting answers is a basic functionality for a DBMS, and at the basis of analytics tasks
- Number restrictions provide a quantitive measure over incomplete information
\triangleright Can encode statistics about the domain such as population, number of cities, number of accidents, etc.
- Can be used to identify gaps and inconsistencies in the KB (e.g., retrieve the missing child of Kedall)
- Can be used to enrich query formulations (e.g., ask for all parents of at least two children)

Outline

- The Setting
- Tractability and Intractability
- Rewritability and Non-rewritability
- Conclusions and Future Directions

Decision Problem

Count

> Input: \quad DL-Lite KB \mathcal{K}, boolean CQ $q, k \in \mathbb{N}^{+}$
> Decide: $(\varepsilon, k) \in \operatorname{cert}(q, \mathcal{K})$

Data Complexity (Same as [Nikolaou et al., 2019])
We consider as size of the input the size of the ABox, and of k (encoded in binary).

Query Answering under Count Semantics is Hard

Proposition ([Kostylev and Reutter, 2015])
Count is coNP-complete for DL-Lite core and CQs.

- Actually, for this problem we lose two desiderable properties when it comes to tractability:
\triangleright Negative information affects the answers to a query

Query Answering under Count Semantics is Hard

Proposition ([Kostylev and Reutter, 2015])
Count is CONP-complete for DL-Lite core and CQs.

- Actually, for this problem we lose two desiderable properties when it comes to tractability:
\triangleright Negative information affects the answers to a query
\triangleright There is no universal model (see later)

Query Answering under Count Semantics is Hard

Proposition ([Kostylev and Reutter, 2015])
Count is CONP-complete for DL-Lite core and CQs.

- Actually, for this problem we lose two desiderable properties when it comes to tractability:
\triangleright Negative information affects the answers to a query
\triangleright There is no universal model (see later)

Query Answering under Count Semantics is Hard

Proposition ([Kostylev and Reutter, 2015])
Count is CONP-complete for DL-Lite core and CQs.

- Actually, for this problem we lose two desiderable properties when it comes to tractability:
\triangleright Negative information affects the answers to a query
\triangleright There is no universal model (see later)

Query Answering under Count Semantics is Hard

Proposition ([Kostylev and Reutter, 2015])

Count is CONP-complete for DL-Lite core and CQs.

- Actually, for this problem we lose two desiderable properties when it comes to tractability:
\triangleright Negative information affects the answers to a query
\triangleright There is no universal model (see later)
- However, the CQ used in the reduction is disconnected, which is very unnatural

Query Shapes

- We study the following basic fragments of CQs:
\triangleright Atomic Queries: AQ
- Acyclic CQs: CQ ${ }^{\text {A }}$
- Connected CQs: CQ ${ }^{\text {C }}$
- Linear (Non-branching) CQs: CQ
- Rooted CQs: CQ ${ }^{\text {R }}$
- We also study a number of combinations of these fragments

Tractability

Proposition

Count is in PTIME in data complexity for DL-Lite pos $\mathcal{H}^{\mathcal{H}-\mathcal{N}^{-}}$and connected, linear CQs (CQ ${ }^{\mathrm{CL}}$).
The superscript "-" over \mathcal{H} limits the interaction between role subsumption and existential restrictions:

$$
\text { If } B \sqsubseteq \geqslant_{n} R_{1} \in \mathcal{T} \text {, then } R_{1} \sqsubseteq R_{2} \notin \mathcal{T}
$$

Proof (Sketch)

We start by showing it for DL-Lite pos $_{\mathcal{H}-}$. We consider the set matches $\left(q, \mathcal{I}_{c a n}^{\mathcal{K}}\right)$ of all matches for q over the canonical interpretation, and consider all constant-preserving functions minimizing the size of such set. Then, due to the limited expressivity of $D L-$ Lite $_{\text {pos }}^{\mathcal{H}^{-} \mathcal{N}^{-}}$, it can be proved that one of these functions is such that:

$$
\mid f\left(\text { matches }\left(q, \mathcal{I}_{\text {can }}^{\mathcal{K}}\right)\right)\left|=\left|\operatorname{matches}\left(q, f\left(\mathcal{I}_{\text {can }}^{\mathcal{K}}\right)\right)\right|\right.
$$

It can be shown that $\left|f\left(\operatorname{matches}\left(q, \mathcal{I}_{\text {can }}^{\mathcal{K}}\right)\right)\right|$ can be computed in polynomial time in $|\mathcal{A}|$.
For DL-Lite oos $\operatorname{Hos}^{-} \mathcal{N}^{-}$the strategy is similar, however we associate to each anonymous object a cardinality (given by the number restrictions in the TBox).

Subcase 1: Linear but Disconnected (I)

Proposition

Count is coNP-hard in data complexity for DL-Lite pos and acyclic, linear, but disconnected CQs (CQ ${ }^{\mathrm{AL}}$).

Proof (Sketch)

This is a direct adaptation of the proof by [Kostylev and Reutter, 2015] a reduction from the co-3-colorability problem to Count.

- $\mathcal{A}=\{\operatorname{Vertex}(v) \mid v \in V\} \cup\left\{\operatorname{edge}\left(v_{1}, v_{2}\right) \mid\left(v_{1}, v_{2}\right) \in E\right\} \cup$ $\{$ Blue(b), Green(g), Red(r), hasColor(a, b), hasColor(a, g), hasColor(a, r), edge (a, a) \}
- $\mathcal{T}=\left\{\right.$ Vertex $\sqsubseteq \exists$ hasColor, \exists hasColor ${ }^{-} \sqsubseteq$ Color $\}$
- $q() \leftarrow \operatorname{Color}(c)$, edge $\left(v_{1}, v_{2}\right)$, hasColor $\left(v_{1}, c_{1}\right)$, hasColor $\left(v_{2}, c_{2}\right)$, Blue $\left(c_{1}\right)$, $\operatorname{Blue}\left(c_{2}\right)$, edge $\left(v_{3}, v_{4}\right)$, hasColor $\left(v_{3}, c_{3}\right)$, hasColor $\left(v_{4}, c_{4}\right)$, $\operatorname{Green}\left(c_{3}\right)$, $\operatorname{Green}\left(c_{4}\right)$, $\operatorname{edge}\left(v_{5}, v_{6}\right)$, hasColor $\left(v_{5}, c_{5}\right)$, hasColor $\left(v_{6}, c_{6}\right), \operatorname{Red}\left(c_{5}\right), \operatorname{Red}\left(c_{6}\right)$.
- Then it can be verified that $4=\operatorname{certCard}(q,\langle\mathcal{T}, \mathcal{A}\rangle)$ iff \mathcal{G} is not 3 -colorable.

Example of the Reduction

Example of the Reduction

Query
$q() \leftarrow \operatorname{Color}(c)$, edge $\left(v_{1}, v_{2}\right)$, hasColor $\left(v_{1}, c_{1}\right)$, has Color $\left(v_{2}, c_{2}\right)$, $\operatorname{Blue}\left(c_{1}\right)$, Blue $\left(c_{2}\right)$, edge $\left(v_{3}, v_{4}\right)$, hasColor $\left(v_{3}, c_{3}\right)$, hasColor $\left(v_{4}, c_{4}\right)$, $\operatorname{Green}\left(c_{3}\right), \operatorname{Green}\left(c_{4}\right)$, edge $\left(v_{5}, v_{6}\right)$, has Color $\left(v_{5}, c_{5}\right)$, has Color $\left(v_{6}, c_{6}\right), \operatorname{Red}\left(c_{5}\right), \operatorname{Red}\left(c_{6}\right) \quad 4$

Example of the Reduction

Query
$q() \leftarrow \operatorname{Color}(c)$, edge $\left(v_{1}, v_{2}\right)$, hasColor $\left(v_{1}, c_{1}\right)$, has Color $\left(v_{2}, c_{2}\right)$, $\operatorname{Blue}\left(c_{1}\right)$, Blue $\left(c_{2}\right)$, edge $\left(v_{3}, v_{4}\right)$, hasColor $\left(v_{3}, c_{3}\right)$, hasColor $\left(v_{4}, c_{4}\right)$, $\operatorname{Green}\left(c_{3}\right), \operatorname{Green}\left(c_{4}\right)$, edge $\left(v_{5}, v_{6}\right)$, has Color $\left(v_{5}, c_{5}\right)$, has Color $\left(v_{6}, c_{6}\right), \operatorname{Red}\left(c_{5}\right), \operatorname{Red}\left(c_{6}\right) \quad 3$

Sub-case 2: Connected but Non-linear

Proposition

Count is coNP-hard in data complexity for DL-Lite pos ${ }_{\text {pos }}^{\mathcal{H}}$ and acyclic, connected, but branching CQs (CQ ${ }^{\mathrm{AC}}$).

Proof (Sketch)

This also is a reduction from the co-3-colorability problem to Count. Interestingly, the number to be checked is not a fixed quantity, but is linear in the size of the graph.

Outline

- The Setting
- Tractability and Intractability
- Rewritability and Non-rewritability
- Conclusions and Future Directions

Non-rewritability I

Proposition

Count is PTIME-hard in data complexity for DL-Lite core and atomic queries (AQ).

Proof (Sketch.)

Through a LOGSPACE reduction from the boolean circuit value (CVP) co-problem where all gates are NAND gates and each gate has fan-out of at-most 2 .

Non-rewritability II

Proposition

Count is PTIME-hard in data complexity for DL-Lite core $\underset{\text { Hed }}{\mathcal{H}}$ and rooted, connected, linear queries (CQ ${ }^{\text {CLR }}$).

Proof (Sketch)
This proof is an adaptation of the previous one.

Towards Rewritability: Universal Model

Definition (Universal Model [Nikolaou et al., 2019])
A model \mathcal{I} of a $\mathrm{KB} \mathcal{K}$ is universal for a class of queries \mathcal{Q} iff $\operatorname{ans}(q, \mathcal{I})=\operatorname{cert}(q, \mathcal{K})$ holds for every $q \in \mathcal{Q}$.

Do Universal Models Exist? (I)

Alert!

Under count semantics, the universal model is lost even for very basic DL-Lite members and very restrictive fragments of CQs.

Example

DL-Lite pos does not admit a universal model w.r.t. atomic queries, already.

$$
\mathcal{A}=\left\{\begin{array}{l}
A(a), B(b), \\
P(a, b)
\end{array}\right\} \quad \mathcal{T}=\left\{\begin{array}{l}
A \sqsubseteq \exists Q, \\
\exists Q^{-} \sqsubseteq B
\end{array}\right\}
$$

Do Universal Models Exist? (I)

Alert!

Under count semantics, the universal model is lost even for very basic DL-Lite members and very restrictive fragments of CQs.

Example

DL-Lite pos does not admit a universal model w.r.t. atomic queries, already.

$$
\mathcal{A}=\left\{\begin{array}{l}
A(a), B(b), \\
P(a, b)
\end{array}\right\} \quad \mathcal{T}=\left\{\begin{array}{l}
A \sqsubseteq \exists Q, \\
\exists Q^{-} \sqsubseteq B
\end{array}\right\}
$$

Queries:

- $q() \leftarrow B(y)$

Do Universal Models Exist? (I)

Alert!

Under count semantics, the universal model is lost even for very basic DL-Lite members and very restrictive fragments of CQs.

Example

DL-Lite pos does not admit a universal model w.r.t. atomic queries, already.

$$
\mathcal{A}=\left\{\begin{array}{l}
A(a), B(b), \\
P(a, b)
\end{array}\right\} \quad \mathcal{T}=\left\{\begin{array}{l}
A \sqsubseteq \exists Q, \\
\exists Q^{-} \sqsubseteq B
\end{array}\right\}
$$

Queries:

- $q() \leftarrow B(y)$

Do Universal Models Exist? (I)

Alert!

Under count semantics, the universal model is lost even for very basic DL-Lite members and very restrictive fragments of CQs.

Example

DL-Lite ${ }_{\text {pos }}$ does not admit a universal model w.r.t. atomic queries, already.

$$
\mathcal{A}=\left\{\begin{array}{l}
A(a), B(b), \\
P(a, b)
\end{array}\right\} \quad \mathcal{T}=\left\{\begin{array}{l}
A \sqsubseteq \exists Q, \\
\exists Q^{-} \sqsubseteq B
\end{array}\right\}
$$

Queries:

- $q() \leftarrow B(y)$
- $q() \leftarrow Q(a, b)$

Do Universal Models Exist? (II)

Proposition
DL-Lite $\mathcal{C o r e r}_{\mathcal{N}}^{\mathcal{V}^{-}}$has a universal model w.r.t. Count over $\mathrm{CQ}^{\mathrm{CR}}$ queries.

Proof
By showing that the restricted chase [Calvanese et al., 2013], [Botoeva et al., 2010] is universal.

Rewriting Algorithm

- The existence of a universal model is a hint that a rewriting algorithm might exist
- In our work we devise such a rewriting algorithm, however:
\triangleright It is highly non-trivial (and definitely too verbose to be formally presented here)
Δ It is mostly of theoretical interest, and not very practical
- The query language for the rewriting is in LOGSPACE (data complexity), and it has aggregation variables, nested aggregation, and a limited form of arithmetics
- Such language has a direct translation into SQL

Why is the Algorithm Non-trivial? Anonymous Contribution

Example

$\mathrm{KB}: \mathcal{T}=\left\{A \sqsubseteq \geqslant_{3} P\right\}, \mathcal{A}=\{A(a)\}$
Input Query: $q(x) \leftarrow P(x, y)$
The original query, part of the rewriting, looks in the ABox for all P-paths of length 1:

Why is the Algorithm Non-trivial? Anonymous Contribution

Example

$\mathrm{KB}: \mathcal{T}=\left\{A \sqsubseteq \geqslant{ }_{3} P\right\}, \mathcal{A}=\{A(a)\}$
Input Query: $q(x) \leftarrow P(x, y)$
The original query, part of the rewriting, looks in the ABox for all P-paths of length 1:

Rewritten CQ $q^{\prime}(x) \leftarrow A(x)$
There is a single match $\mu=\{x \mapsto a\}$ for q^{\prime} over \mathcal{A}, which can be extended into exactly three matches for q in $c_{\infty}(\mathcal{K})$, by mapping variable y into some anonymous object.

Rewriting Rationale

- We need to partition the queries, taking into account their anonymous contribution (i.e., number of ways a mapping can be extended into the anonymous part)
- We need to guarantee that the partitions are disjoint
- Each partition is a generalized union handling the removal of duplicate answers introduced by the rewriting itself
- The anonymous contribution needs to be computed by saturating the subsumptions in the TBox, and through an atomic decomposition of concepts and roles

Batman Example

$$
\mathcal{T}=\left\{\begin{array}{ll}
A & \sqsubseteq \geqslant_{2} P_{1}, \\
\exists P_{1}^{-} & \sqsubseteq \geqslant_{3} P_{2}
\end{array}\right\}, \quad \mathcal{A}=\left\{\begin{array}{l}
A(a), P_{1}(a, b), \\
P_{2}(b, d), P_{2}(b, e)
\end{array}\right\}
$$

Batman Example

$$
\mathcal{T}=\left\{\begin{array}{l}
A \\
\exists P_{1}^{-} \sqsubseteq \geqslant_{2} P_{1}, \\
\sqsubseteq \geqslant_{3} P_{2}
\end{array}\right\}, \quad \mathcal{A}=\left\{\begin{array}{l}
A(a), P_{1}(a, b), \\
P_{2}(b, d), P_{2}(b, e)
\end{array}\right\}
$$

Batman Example

$$
\mathcal{T}=\left\{\begin{array}{ll}
A & \sqsubseteq \geqslant_{2} P_{1}, \\
\exists P_{1}^{-} & \sqsubseteq \geqslant_{3} P_{2}
\end{array}\right\}, \quad \mathcal{A}=\left\{\begin{array}{l}
A(a), P_{1}(a, b), \\
P_{2}(b, d), P_{2}(b, e)
\end{array}\right\}
$$

Query: $q(x) \leftarrow A(x), P_{1}\left(x, y_{1}\right), P_{2}\left(y_{1}, y_{2}\right) \quad 2$

Batman Example

Query: $q(x) \leftarrow A(x), P_{1}\left(x, y_{1}\right), P_{2}\left(y_{1}, y_{2}\right)$
2 $G E_{\alpha}$:

Batman Example

Query: $q(x) \leftarrow A(x), P_{1}\left(x, y_{1}\right), P_{2}\left(y_{1}, y_{2}\right)$
2
$G E_{\alpha}$:

$$
\left.\left\{q\left(x: y_{1}\right) \leftarrow A(x), P_{1}\left(x, y_{1}\right), P_{1}\left(-, y_{1}\right), \quad\right\}\right\rangle
$$

Batman Example

Query: $q(x) \leftarrow A(x), P_{1}\left(x, y_{1}\right), P_{2}\left(y_{1}, y_{2}\right)$
2
$G E_{\alpha}$:

$$
\left.\left\{q\left(x: y_{1}\right) \leftarrow A(x), P_{1}\left(x, y_{1}\right), P_{1}\left(-, y_{1}\right), \exists_{z}^{2} P_{2}\left(y_{1}, z\right)\right\}\right\rangle
$$

Batman Example

Query: $q(x) \leftarrow A(x), P_{1}\left(x, y_{1}\right), P_{2}\left(y_{1}, y_{2}\right)$
2
$G E_{\alpha}$:

$$
\left\langle Q\left(x, \operatorname{cnt}\left(y_{1}\right) \cdot 3-2\right),\left\{q\left(x: y_{1}\right) \leftarrow A(x), P_{1}\left(x, y_{1}\right), P_{1}\left(-, y_{1}\right), \exists_{z}^{2} P_{2}\left(y_{1}, z\right)\right\}\right\rangle
$$

Batman Example

$$
\mathcal{T}=\left\{\begin{array}{ll}
A & \sqsubseteq \geqslant_{2} P_{1}, \\
\exists P_{1}^{-} & \sqsubseteq \geqslant_{3} P_{2}
\end{array}\right\}, \quad \mathcal{A}=\left\{\begin{array}{l}
A(a), P_{1}(a, b), \\
P_{2}(b, d), P_{2}(b, e)
\end{array}\right\}
$$

Query: $q(x) \leftarrow A(x), P_{1}\left(x, y_{1}\right), P_{2}\left(y_{1}, y_{2}\right) \quad 2$

$$
G E_{\alpha}:
$$

$$
\begin{aligned}
& \left\langle Q\left(x, \operatorname{cnt}\left(y_{1}\right) \cdot 3-0\right),\left\{q\left(x: y_{1}\right) \leftarrow A(x), P_{1}\left(x, y_{1}\right), P_{1}\left(-, y_{1}\right), \exists_{z}^{=0} P_{2}\left(y_{1}, z\right)\right\}\right\rangle \\
& \left\langle Q\left(x, \operatorname{cnt}\left(y_{1}\right) \cdot 3-1\right),\left\{q\left(x: y_{1}\right) \leftarrow A(x), P_{1}\left(x, y_{1}\right), P_{1}\left(-, y_{1}\right), \exists_{z}^{=1} P_{2}\left(y_{1}, z\right)\right\}\right\rangle \\
& \left\langle Q\left(x, \operatorname{cnt}\left(y_{1}\right) \cdot 3-2\right),\left\{q\left(x: y_{1}\right) \leftarrow A(x), P_{1}\left(x, y_{1}\right), P_{1}\left(-, y_{1}\right), \exists_{z}^{=2} P_{2}\left(y_{1}, z\right)\right\}\right\rangle
\end{aligned}
$$

Batman Example

$$
\mathcal{T}=\left\{\begin{array}{ll}
A & \sqsubseteq \geqslant_{2} P_{1}, \\
\exists P_{1}^{-} & \sqsubseteq \geqslant_{3} P_{2}
\end{array}\right\}, \quad \mathcal{A}=\left\{\begin{array}{l}
A(a), P_{1}(a, b), \\
P_{2}(b, d), P_{2}(b, e)
\end{array}\right\}
$$

Query: $q(x) \leftarrow A(x), P_{1}\left(x, y_{1}\right), P_{2}\left(y_{1}, y_{2}\right) \quad 2$

$$
G E_{\alpha}:
$$

$$
\begin{aligned}
& \left\langle Q\left(x, \operatorname{cnt}\left(y_{1}\right) \cdot 3-0\right),\left\{q\left(x: y_{1}\right) \leftarrow A(x), P_{1}\left(x, y_{1}\right), P_{1}\left(-, y_{1}\right), \exists_{z}^{=0} P_{2}\left(y_{1}, z\right)\right\}\right\rangle \\
& \left\langle Q\left(x, \operatorname{cnt}\left(y_{1}\right) \cdot 3-1\right),\left\{q\left(x: y_{1}\right) \leftarrow A(x), P_{1}\left(x, y_{1}\right), P_{1}\left(-, y_{1}\right), \exists_{z}^{=1} P_{2}\left(y_{1}, z\right)\right\}\right\rangle \\
& \left\langle Q\left(x, \operatorname{cnt}\left(y_{1}\right) \cdot 3-2\right),\left\{q\left(x: y_{1}\right) \leftarrow A(x), P_{1}\left(x, y_{1}\right), P_{1}\left(-, y_{1}\right), \exists_{z}^{=2} P_{2}\left(y_{1}, z\right)\right\}\right\rangle
\end{aligned}
$$

Batman Example

$$
\mathcal{T}=\left\{\begin{array}{ll}
A & \sqsubseteq \geqslant_{2} P_{1}, \\
\exists P_{1}^{-} & \sqsubseteq \geqslant_{3} P_{2}
\end{array}\right\}, \quad \mathcal{A}=\left\{\begin{array}{l}
A(a), P_{1}(a, b), \\
P_{2}(b, d), P_{2}(b, e)
\end{array}\right\}
$$

Query: $q(x) \leftarrow A(x), P_{1}\left(x, y_{1}\right), P_{2}\left(y_{1}, y_{2}\right) \quad 2$
$G E_{\alpha}$:

$$
\begin{aligned}
& \left\langle Q\left(x, \operatorname{cnt}\left(y_{1}\right) \cdot 3-0\right),\left\{\begin{array}{l}
q\left(x: y_{1}\right) \leftarrow A(x), P_{1}\left(x, y_{1}\right), P_{1}\left(-, y_{1}\right), \exists_{z}=0 P_{2}\left(y_{1}, z\right) \\
q\left(x: y_{1}\right) \leftarrow A(x), P_{1}\left(x, y_{1}\right) \neq \exists_{z}=0 \\
P_{2}\left(y_{1}, z\right)
\end{array}\right\}\right\rangle \\
& \left\langle Q\left(x, \operatorname{cnt}\left(y_{1}\right) \cdot 3-1\right),\left\{q\left(x: y_{1}\right) \leftarrow A(x), P_{1}\left(x, y_{1}\right), P_{1}\left(-, y_{1}\right), \neq z=1 P_{2}\left(y_{1}, z\right)\right\}\right\rangle \\
& \left\langle Q\left(x, \operatorname{cnt}\left(y_{1}\right) \cdot 3-2\right),\left\{q\left(x: y_{1}\right) \leftarrow A(x), P_{1}\left(x, y_{1}\right), P_{1}\left(-, y_{1}\right), \exists_{z}^{=2} P_{2}\left(y_{1}, z\right)\right\}\right\rangle
\end{aligned}
$$

Batman Example

$$
\mathcal{T}=\left\{\begin{array}{ll}
A & \sqsubseteq \geqslant_{2} P_{1}, \\
\exists P_{1}^{-} & \sqsubseteq \geqslant_{3} P_{2}
\end{array}\right\}, \quad \mathcal{A}=\left\{\begin{array}{l}
A(a), P_{1}(a, b), \\
P_{2}(b, d), P_{2}(b, e)
\end{array}\right\}
$$

Query: $q(x) \leftarrow A(x), P_{1}\left(x, y_{1}\right), P_{2}\left(y_{1}, y_{2}\right) \quad 2$
$G E_{\alpha}$:

$$
\begin{aligned}
& \left\langle Q\left(x, \operatorname{cnt}\left(y_{1}\right) \cdot 3-0\right),\left\{\begin{array}{l}
q\left(x: y_{1}\right) \leftarrow A(x), P_{1}\left(x, y_{1}\right), P_{1}\left(-, y_{1}\right), \exists_{z}=0 P_{2}\left(y_{1}, z\right) \\
q\left(x: y_{1}\right) \leftarrow A(x), P_{1}\left(x, y_{1}\right) \neq \exists_{z}=0 \\
P_{2}\left(y_{1}, z\right)
\end{array}\right\}\right\rangle \\
& \left\langle Q\left(x, \operatorname{cnt}\left(y_{1}\right) \cdot 3-1\right),\left\{q\left(x: y_{1}\right) \leftarrow A(x), P_{1}\left(x, y_{1}\right), P_{1}\left(-, y_{1}\right), \neq z=1 P_{2}\left(y_{1}, z\right)\right\}\right\rangle \\
& \left\langle Q\left(x, \operatorname{cnt}\left(y_{1}\right) \cdot 3-2\right),\left\{q\left(x: y_{1}\right) \leftarrow A(x), P_{1}\left(x, y_{1}\right), P_{1}\left(-, y_{1}\right), \exists_{z}^{=2} P_{2}\left(y_{1}, z\right)\right\}\right\rangle
\end{aligned}
$$

Batman Example

$$
\mathcal{T}=\left\{\begin{array}{ll}
A & \sqsubseteq \geqslant_{2} P_{1}, \\
\exists P_{1}^{-} \sqsubseteq \geqslant_{3} P_{2}
\end{array}\right\}, \quad \mathcal{A}=\left\{\begin{array}{l}
A(a), P_{1}(a, b), \\
P_{2}(b, d), P_{2}(b, e)
\end{array}\right\}
$$

Query: $q(x) \leftarrow A(x), P_{1}\left(x, y_{1}\right), P_{2}\left(y_{1}, y_{2}\right) \quad 2$
$G E_{\alpha}$:
$\left\langle Q\left(x, \operatorname{cnt}\left(y_{1}\right) \cdot 3-0\right),\left\{\begin{array}{l}q\left(x: y_{1}\right) \leftarrow A(x), P_{1}\left(x, y_{1}\right), P_{1}\left(-, y_{1}\right), \exists_{z}=0 P_{2}\left(y_{1}, z\right) \\ q\left(x: y_{1}\right) \leftarrow A(x), P_{1}\left(x, y_{1}\right) \exists_{z}^{=0} P_{2}\left(y_{1}, z\right)\end{array}\right\}\right\rangle$
$\left\langle Q\left(x, \operatorname{cnt}\left(y_{1}\right) \cdot 3-1\right),\left\{q\left(x: y_{1}\right) \leftarrow A(x), P_{1}\left(x, y_{1}\right), P_{1}\left(-, y_{1}\right), \exists_{z}^{=1} P_{2}\left(y_{1}, z\right)\right\}\right\rangle$

$$
\left\langle Q\left(x, \operatorname{cnt}\left(y_{1}\right) \cdot 3-2\right),\left\{q\left(x: y_{1}\right) \leftarrow A(x), P_{1}\left(x, y_{1}\right), P_{1}\left(-, y_{1}\right), \exists_{z}^{2} P_{2}\left(y_{1}, z\right)\right\}\right\rangle \quad 1
$$

$G E_{\beta}:$

Batman Example

$$
\mathcal{T}=\left\{\begin{array}{ll}
A & \sqsubseteq \geqslant_{2} P_{1}, \\
\exists P_{1}^{-} \sqsubseteq \geqslant_{3} P_{2}
\end{array}\right\}, \quad \mathcal{A}=\left\{\begin{array}{l}
A(a), P_{1}(a, b), \\
P_{2}(b, d), P_{2}(b, e)
\end{array}\right\}
$$

Query: $q(x) \leftarrow A(x), P_{1}\left(x, y_{1}\right), P_{2}\left(y_{1}, y_{2}\right) \quad 2$
$G E_{\alpha}$:

$$
\left\langle Q\left(x, \operatorname{cnt}\left(y_{1}\right) \cdot 3-0\right),\left\{\begin{array}{l}
q\left(x: y_{1}\right) \leftarrow A(x), P_{1}\left(x, y_{1}\right), P_{1}\left(-, y_{1}\right), \exists_{z}=0 P_{2}\left(y_{1}, z\right) \\
q\left(x: y_{1}\right) \leftarrow A(x), P_{1}\left(x, y_{1}\right) \nexists z=0 P_{2}\left(y_{1}, z\right)
\end{array}\right\}\right\rangle
$$

$$
\left\langle Q\left(x, \operatorname{cnt}\left(y_{1}\right) \cdot 3-1\right),\left\{q\left(x: y_{1}\right) \leftarrow A(x), P_{1}\left(x, y_{1}\right), P_{1}\left(-, y_{1}\right), \exists_{z}=1 P_{2}\left(y_{1}, z\right)\right\}\right\rangle
$$

$$
\left\langle Q\left(x, \operatorname{cnt}\left(y_{1}\right) \cdot 3-2\right),\left\{q\left(x: y_{1}\right) \leftarrow A(x), P_{1}\left(x, y_{1}\right), P_{1}\left(-, y_{1}\right), \exists_{z}^{2} P_{2}\left(y_{1}, z\right)\right\}\right\rangle \quad 1
$$

$G E_{\beta}:$

$$
\begin{aligned}
& \left\langle Q\left(x, \operatorname{cnt}\left(y_{1}\right) \cdot(2-0) \cdot 3\right),\left\{q(x) \leftarrow A(x), \exists_{y}=0 P_{1}(x, y)\right\}\right\rangle \\
& \left\langle Q\left(x, \operatorname{cnt}\left(y_{1}\right) \cdot(2-1) \cdot 3\right),\left\{q(x) \leftarrow A(x), \exists_{y}^{=1} P_{1}(x, y)\right\}\right\rangle
\end{aligned}
$$

Batman Example

$$
\mathcal{T}=\left\{\begin{array}{ll}
A & \sqsubseteq \geqslant_{2} P_{1}, \\
\exists P_{1}^{-} \sqsubseteq \geqslant_{3} P_{2}
\end{array}\right\}, \quad \mathcal{A}=\left\{\begin{array}{l}
A(a), P_{1}(a, b), \\
P_{2}(b, d), P_{2}(b, e)
\end{array}\right\}
$$

Query: $q(x) \leftarrow A(x), P_{1}\left(x, y_{1}\right), P_{2}\left(y_{1}, y_{2}\right) \quad 2$
$G E_{\alpha}$:

$$
\left\langle Q\left(x, \operatorname{cnt}\left(y_{1}\right) \cdot 3-0\right),\left\{\begin{array}{l}
q\left(x: y_{1}\right) \leftarrow A(x), P_{1}\left(x, y_{1}\right), P_{1}\left(-, y_{1}\right), \exists_{z}=0 P_{2}\left(y_{1}, z\right) \\
q\left(x: y_{1}\right) \leftarrow A(x), P_{1}\left(x, y_{1}\right) \nexists z=0 P_{2}\left(y_{1}, z\right)
\end{array}\right\}\right\rangle
$$

$$
\left\langle Q\left(x, \operatorname{cnt}\left(y_{1}\right) \cdot 3-1\right),\left\{q\left(x: y_{1}\right) \leftarrow A(x), P_{1}\left(x, y_{1}\right), P_{1}\left(-, y_{1}\right), \exists_{z}=1 P_{2}\left(y_{1}, z\right)\right\}\right\rangle
$$

$$
\left\langle Q\left(x, \operatorname{cnt}\left(y_{1}\right) \cdot 3-2\right),\left\{q\left(x: y_{1}\right) \leftarrow A(x), P_{1}\left(x, y_{1}\right), P_{1}\left(-, y_{1}\right), \exists_{z}^{2} P_{2}\left(y_{1}, z\right)\right\}\right\rangle \quad 1
$$

$G E_{\beta}:$

$$
\left\langle Q\left(x, \operatorname{cnt}\left(y_{1}\right) \cdot(2-0) \cdot 3\right),\left\{q(x) \leftarrow A(x), \exists \exists_{y}^{0} P_{1}(x, y)\right\}\right\rangle
$$

$$
\left\langle Q\left(x, \operatorname{cnt}\left(y_{1}\right) \cdot(2-1) \cdot 3\right),\left\{q(x) \leftarrow A(x), \exists \exists_{y}^{1} P_{1}(x, y)\right\}\right\rangle \quad 3
$$

Outline

- The Setting
- Tractability and Intractability
- Rewritability and Non-rewritability
- Conclusions and Future Directions

Recap of Results

	$A Q, C Q{ }^{\text {CL }}$	$C Q^{\text {AC }}$	$C Q^{\text {CLR }}, C Q^{\text {CR }}$	$C Q^{\text {AL }}$	CQ
DL-Lite pos	P	conP	L	conP-c	conP-c
DL-Lite ${ }_{\text {pos }}^{\text {H }}$	PTime	conP-c	conp	conP-c	conP-c
DL-Lite ${ }_{\text {pos }} \mathcal{H}^{-1} \mathcal{N}^{-}$	PTime	conP-c	conP	CONP-c	CONP-c
DL-Lite core	CONP	CONP	L	CONP-c	cone-c
DL-Lite ${ }_{\text {core }}{ }^{\text {- }}$	conp	conP	L	conP-c	conP-c
DL-Lite ${ }_{\text {core }}^{\mathcal{H}}$	PTIME-h/conP	PTIME-h/conP	PTIME-h/conP	CONP-c	conP-c

Table: Summary of complexity results ('-h' stands for '-hard', and '-c' for '-complete'). New bounds proved here are in blue, bounds that directly follow in green, and already known bounds in black.

- Open questions:
\triangleright Is the P-membership result for DL-Lite core $_{\mathcal{H}^{-} \mathcal{N}^{-}}$and $\mathrm{AQ}, \mathrm{CQ}{ }^{C L}$ tight?
- Does rewritability hold on DL-Lite core ${ }_{c}^{-\mathcal{H}^{-} \mathcal{N}^{-}}$and rooted queries?
\triangleright What if we consider numbers in the TBox for data-complexity?
- Our rewriting produces a query whose size is exponential in such numbers, when these are encoded in binary

Thanks.

Thanks.

Thanks.

References I

[Bienvenu and Ortiz, 2015] Bienvenu, M. and Ortiz, M. (2015).
Ontology-mediated query answering with data-tractable description logics.
In Reasoning Web. Web Logic Rules - 11th Int. Summer School Tutorial Lectures (RW), volume 9203 of Lecture Notes in Computer Science, pages 218-307. Springer.
[Botoeva et al., 2010] Botoeva, E., Artale, A., and Calvanese, D. (2010).
Query rewriting in DL-Lite horn
In Proc. of the 23rd Int. Workshop on Description Logics (DL), volume 573 of CEUR Electronic Workshop Proceedings, http://ceur-ws.org/, pages 267-278.
[Calvanese et al., 2013] Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., and Rosati, R. (2013).
Data complexity of query answering in description logics.
Artificial Intelligence, 195:335-360.
[Kostylev and Reutter, 2015] Kostylev, E. V. and Reutter, J. L. (2015). Complexity of answering counting aggregate queries over DL-Lite. J. of Web Semantics, 33:94-111.

References II

[Nikolaou et al., 2019] Nikolaou, C., Kostylev, E. V., Konstantinidis, G., Kaminski, M., Cuenca Grau, B., and Horrocks, I. (2019). Foundations of ontology-based data access under bag semantics. Artificial Intelligence, 274:91-132.
[Poggi et al., 2008] Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., and Rosati, R. (2008).
Linking data to ontologies.
J. on Data Semantics, X:133-173.

[^0]: ${ }^{1}$ E.g., data organized according to complex database schemas involving a significant number of attributes

